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The problem

Legal system “Racism has always been Problem statement

about predicting, about
Person-based predictive making certain racial Can we use macro-level
models perpetuate groups seem as if they predictors that presume
systemic racism and are . , ,
inherently biased. are predisposed to do to alleviate biased
_ bad things and foundations?
e State and City level h £ stif
law enforcement have ere Or? Justity
already experimented controlling them”
with presumed We think so.
objective’ Al
generated -Dorothy E. Roberts.
predictions.
Penn Law




Challenges deep-dive

Challenge 1 Challenge 2 Challenge 3

‘Broken Windows'’

Attempts to heavily
regulate small crimes to
prevent larger crimes
from happening.

Stop or avert small
crimes from happening
we get less big crimes.

Predicting is already
racist.

Models trained on
demographics of the
arrest record

Racism by proxy.

Data availability

Need to be extremely
cautious about data and
the potential to be racist

by proxy.



Moment of Silence




Thank You.

Inform

Columbia Stanford MIT Penn

Amplify

D4BL AL Now AJL AFP Chupadatos



https://openpolicing.stanford.edu
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
https://www.law.upenn.edu/faculty/roberts1/
https://datascience.columbia.edu/diversity/race-data-science-resources/
https://d4bl.org/about.html
https://ainowinstitute.org
https://www.ajl.org/
https://www.aiforpeople.org
https://chupadados.codingrights.org/es/introducao/

Solution

Predict at a state level with
ambiguous/unrelated data is a start

Correlation strength between economic predictors and national average of targets

avg_unemployment_rate

violent_crime_1000 -

property_crime_1000 -

avg_unemployment rate violent_crime_ 1000 property_crime_1000
e Predictors:
o  Bureau of Labor Statistics
m  Annualized CPI
m State Unemployment Rate
o  State Attorney General Political Affiliation
e Targets:
o  FBI crime database:
m  State Per Capita Violent Crime
m  State Per Capita Property Crime




Data Collection &
Exploratory Data Analysis



Data Sources

Wikipedia & NAAG Web
AP| Scrape

Statistics Public Data F.B.l. Crime Data API

https://www.crummy.com/software/BeautifulSoup/

https://crime-data-explorer.fr.cloud.gov/

pages/docApi

https://www.bls.gov/developers/

https://github.com/goldsmith/Wikipedia


https://github.com/goldsmith/Wikipedia
https://www.crummy.com/software/BeautifulSoup/
https://www.bls.gov/developers/
https://crime-data-explorer.fr.cloud.gov/pages/docApi
https://crime-data-explorer.fr.cloud.gov/pages/docApi

Box Plot - Violent Crimes

US Violent Crime per 1,000 pop. 1979 - 2020
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Box Plot - Property Crimes

US Property Crime per 1,000 pop. 1979 - 2020
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Seasonality?

The aggregated ‘National’ data does not
appear to be seasonal.

We took a closer look at State level data.

US Population 1979 - 2020

US Property Crime per 1,000 pop. 1979 - 2020

1980 1990 2000 2010 2020
ar

Consistent rise in population growth
between 1970 and 2020. May contribute
to the decline in Property Crime.




L east Violent State - Maine

ME Violent Crime Components 1979 - 2020
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Least Property Crime State - Massachusetts

MA Property Crime Components 1979 - 2020
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Most Violent State - Washington DC

DC Violent Crime Components 1979 - 2020
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Most Property Crime State - Washington DC

DC Property Crime Components 1979 - 2020
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Rankings

Rankings can be difficult since the scales are not
the same from one state to another.

Though, DC did have population growth and a
general decline in property crime, they just had the
most property crime relative to other states.
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Stationarity

Violent Crime: States that exhibit
stationarity

o /.84%

e 1stdifference: 82.35%

e 2nd difference: 94.12%

Property Crime: States that exhibit
stationarity

o 0%

e st difference: 84.31%

e 2nd difference: 92.16%

Second Degree differencing stationarity
states. Where p > than alpha.

Violent Crime States that lack
stationarity

e Indiana
e Michigan
e Oregon

Property Crime States that lack
stationarity:

e J|owa

e Michigan

e Tennessee

e West Virginia



Modeling



Model Considerations

ARIMA
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Flow Chart image Credit:
Delima, Allemar Jhone. (2019). Predicting Scholarship Grants Using Data Mining Techniques.

International Journal of Machine Learning and Computing. 9. 513-519. 10.18178/ijmlc.2019.9.4.834.

1979 | 1980 2018 | 2019 | 2020 2021
Input width = 41
t=0 | t=1 [t=.. |t=39(t=40|t=41 Target
Observed = 42
t=0 | t=1 [t=.. |t=39(t=40|t=41 t=42

In-Sample Predictions =41

Out-of-sample
prediction

Recurrent Neural Net with LSTM
(Long Short-Term Memory)

Each model was run 51 times
for each target variable, for
each state.




Performance



ARIMA

Parameters:
Endogenous variable (violent or
property crime)
Exogenous variables (predictors)
Best order (calculated using
auto_arima)

Results:

Violent Crime States
e MAE avg: 0.369
e RMSE avg: 0.795
e R2avg:-0.531

Property Crime States
e MAEavg: 2.243
e RMSE avg:4.772
e R2avg:0.545



Recurrent Neural

Network with Long

1980 | ... | 2018 | 2019 | 2020 2021
Short-Term Memory I

Predictors: economic vars and t=1 | t=.. |t=39|t=40 = Target
political measure
Too few observations per sample Observed = 42
to do a true train and testing split
LSTM was trained on predictors for t=1|t=_ |t=39|t=40|t=41 t=42
1979 through 2020.
Model predicted targets for years In-Sample Predictions =41 | Out-of-sample
1980 through 2021 prediction

Evaluation was measured by errors
compared to observed 1980 - 2020




LSTM Performance

Violent Crime Rate Metrics Averages
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LSTM Performance

A case where we outperformed baseline

Hawaii (Hl) Baseline MAE = 0.86, LSTM MAE = 0.56
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LSTM Performance

... and an example of our worst performance vs. baseline

[llinois (IL) Baseline MAE = 0.167, LSTM MAE = 0.706
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LSTM Performance

Our best in predicting property crime (still underperformed, though):

New Mexico (NM) Baseline MAE = 0.231, LSTM MAE = 0.265
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LSTM Performance

Like with violent crime, our worst-performing model for property crime was bad

Colorado (CO) Baseline MAE = 0.183, LSTM MAE = 0.520
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Recurrent Neural
Network with Long
Short-Term Memory

BRIGHT SPOTS

The RNN method had less stringent
requirements for meeting classical
modeling assumptions.

The baseline method was a high bar to
beat with this kind of data. We think our
model could do a lot better with more
data to learn from!

LIMITATIONS

As a black-box deep learning
specification, it’s difficult to tell
which of the features conveyed
the most importance to
predicting crime rates.

Limited frequency of data and
small number of observations
likely does not give the model
enough to train on.

A next attempt should
incorporate more data, but
perhaps also attempt an
advanced technique like
autoregressive recurrence.




Recommendations



Conclusions

This is a very hard problem that has
many systemic challenges with it We would want to find ‘the right data’
Hawaii might be able to actually use not just more of it.

LSTM model.

We want to contribute to the fight
Main benefit of our tool presented against systemic racism in law

here today is that we are able to enforcement and believe that Al could

absorb shocks and smooth our be ethically deployed in the future.
predictions as to how much resources

are allocated.




Conclusions

Use Cases:

State government officials
(Treasurer, Governor, Attorney
General...) Could benefit to start the
resource allocation/policy process.

Government watch groups can use
this public tool to hold elected
officials accountable.

Can expand toinclude a
dashboard

Could be expanded to include
targets or co-targets.

We could use more training
instances to better tune a model.



Future expansion: Dashboard
Visualizing and Predicting US Crime Rates
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Thank You




