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Airline delays cost
Problem: the consumer

time and money.




Use A.l. to predict
Solution: a flight will be

delayed.




e Large volume of data.
e Many factors can

Cha[[enges- contribute to a delay

making analysis and
predictions difficult.




Help a customer
Benefit: plan a trip or buy

insurance!




Deployment: An App! ...

Eventually!!!




Deliverables

Today: A model that
works

e Used XGBoost to find and
guess if a flight will be
delayed.

Next: A beta version of
an app.

A web based app that can
tell you if you are likely to
be delayed.

Stretch: a model and app
that will predict a delay
length (in bins of time) and
suggest alternatives.




Building the prediction
model.




1. Delay:

a. Anyflight that arrives 15 later than
original scheduled arrival time.

Definitions. 2. Arrival:

a. Aircraftis parked, plugged into
power, brakes are armed and the
door is open.




Predict if a flight
What we want will be delayed.

our model to do. Yes/No




Building a prediction model in three easy steps!

Bureau of
Transportation XGBoost
statistics

Get the data! Clean data Model data

Use Python and perform ETL and
cleaning to pass to our model for
predictions



Getting the Data




Data set statistics.

Initial Scrape Cleaning subset
e 6 years of flight history e 50/50 delayed vs on-time
starting from August 2021 observations
to January 2016 ,
e Random Samplingto 25%
e 68individual CSV’s. Each of original population
~110mb files.

o 2,798,138 observations
e 34 variable columns

e 34,409,230 observations




Data exploration goals

Intuition vs Reality

See if our intuition holds up
to the reported
observations coming in.

Larger airlines delayed
more than smaller airlines.

Busier airports delayed
more than not busier
airports.

Glean any fast facts

We want to know how data
is being presented and see
if we can make meaningful
engineered features to
improve our model’s ability
to make predictions.




Exploratory Highlights
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Exploratory
Analysis
Highlights
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E)Sp lorato ry Daily flight delays,

all airlines.
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Exploratory
Analysis
Highlights -
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E)Sp I,O rato ry Count of flights delayed at least 15 minutes by day of the week
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E)Sp I.O rato ry Airline delays by class of delay frequency.
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Worst performing airports
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Exploratory
Analysis
Highlights

Delay
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Worst 10 performing airports by class of delay frequency.

l Arrival delay in minutes

MCO - 1660

—
6'1-120
e 0 w20
- > 240
o I e
g so I O
8
= o I i
o]
g
3 v I O
e
|_
< ocv [ 1
. =
o =
oo | J

10000 20000 30000 40000 50000 60000 70000 80000
Number of delayed flights

(=]



These data are rich and dense.

e Generally our intuition informs us pretty well
about where we are likely to have a delay.

o Large, busy airports on large airlines
tended to show delays.

e There were busy travel days and months
throughout our data...but we are agnostic to
time dimensions in this analysis.




Modeling




Modeling - approach

Features

Time columns and delay metrics ignored and removed from the
feature set.

Continuous Variable
A sole continuous variable, Distance (miles).

Categorical Variables

Origin, Destination, Day of Month, Day of Week, Month, Airline resulting
in 820 dummy columns.




Modeling - Task definition

Scoped to binary classification: delay or no delay predictions.

1 delayed flight, O not-delayed




Modeling- Candidates

Model candidates

Classification species of Boosted Tree algorithms and a logistic
regression.

Justification
Tabular, labeled, structured data.

Models
AdaBoost, XGBoost, Light GBM, and Logistic Regression.




XGB speed-up:

tree_method =
hist’

Modeling- Selection: Results

fit_time
score_time
test_accuracy
test_precision
test_recall
test_f1

test_roc_auc

64.059811
1.031001
0.573486
0.575740
0.607307
0.591070
0.601619

LogReg_train AdaBoost_train

149.218789

15.405630
0.572261
0.573699
0.612711
0.592531
0.600139

XGB_train
39.787447
2.508643
0.585975
0.588334
0.614092
0.600932
0.619913

LGBM_train
11.307615
2.082145
0.588946
0.590858
0.618605
0.604405
0.624587




Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Baseline Results
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Distance

mattered most to

our model.
Followed by
temporal
descriptions

Features

Modeling- Tuning: Test Results
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Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Baseline Results

1.0

& o o
N ) o0

True Positive Rate (Dleay)

o
N

0.0

ROC AUC
XGBoost Classifier

—— XGBClassifier (AUC = 0.62)
baseline

0.0

0.2

0.4 0.6

False Positive (false Delay) Rate

0.8

10



Distance
mattered most to
our model.
Followed by
temporal
descriptions

Modeling- Tuning: Test Results

ROC AUC
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Mgdel XGBoost Classifier
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Mgdel XGBoost Classifier

C.Matrix

Tuning
Results
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Recall:
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Goals for next
version

Continue to tune model until
desired metrics are met. EG
accuracy >=85%

Engineer more features and
address overfit with more
regularization.

Build the app.




THANK YOU




